The Role of Pollinator Preference in the Maintenance of Pollen Color Variation

Pollinators Prefer Purple Pollen, but there is a Perplexing Prevalence of non-Purple Pollen

Jennifer L. Ison, Elizabeth Tuan, Matthew Koski, Jack Whalen, Ashley Padilla, and Laura Galloway http://isonlab.voices-wooster.edu jison@wooster.edu @JenniferIsonL

Intraspecific floral color variation

Intraspecific floral color variation

Pollen color diversity

Pollen Colors of Selected Plants	
Plant	Approximate Pollen Color
Apple	yellow white
Plum	light grey, grey
Pear	red yellow
Raspberry	white grey
Asparagus	bright orange
Siberian squill	steel blue
Dandelion	red-yellow, orange
Horse chestnut	anatolia
Blueberry	red-yellow, orange
Allium	light olive
Aster	reddish yellow
Borage	blueish grey
Marigold	orange
Joe Pye Weed	bistre green
White sweet clover	auburn
Рорру	blueish grey
Phacelia	navy blue
Goldenrod	golden

Pollen color variation in American Bellflower (*Campanula americana*)

Bellflower's pollen color cline

Mechanisms for Bellflower's pollen color cline

- Pollinatormediated selection
- Abiotic selection
- Neutral

Purple pollen is more resistant to temperate stress

Geographic variation in pollen color is associated with temperature stress

Matthew H. Koski and Laura F. Galloway

Department of Biology, University of Virginia, Charlottesville, VA 22904, USA

Mechanisms for Bellflower's pollen color cline

- Pollinatormediated selection
- Abiotic selection
- Neutral

Team Bellflower

THE COLLEGE OF WOOSTER

Research questions

 Is this even variation that the pollinators could select for?

• Do the pollinators differ in their per visit pollination efficiency?

 In field conditions, do the pollinators have a pollen color preference?

More about Campanula americana, American Bellflower

We know that pollen color is heritable

Fig. 3 Pollen-color score of offspring as a function of average parental pollen-color score for *Campanula americana*. The size of each data point *(n)* corresponds to the number of offspring. The regression line represents the best-fit linear function and standard error.

Koski and Galloway. 2017. New Phytologist

Three main pollinator taxa

Caves and Johnsen. 2017. Methods in E&E

Is this even variation that the pollinators could select for? i.e. Can they perceive it?

Jack Whalen '18

Pollinator perception methods

White pollen plants— Non-rewarding (water only)

Purple pollen plants— Rewarding (sugar water)

Pollinator perception methods

White pollen plants— Non-rewarding (water only)

Purple pollen plants— Non-rewarding (water only)

Pollinator perception results

Research questions

- Is this even variation that the pollinators could select for? YES!
 i.e. Can they perceive it?
- Do the pollinators differ in their per visit pollination efficiency?
 Implications for potential strength of selection
- In field conditions, do the pollinators have a pollen color preference?
 Is the preference frequency dependent?

•Do the pollinators differ in their per visit pollination efficiency?

Implications for potential strength of selection

Pollinator efficiency: methods

- •Measures:
 - Female function
 - Fruit set
 - Seed set

Male function

 How much pollen a pollinator removes compared to how much it deposits

Pollinator efficiency results

significantly more pollen grains.

 Megachile removed twice as much pollen than the other bees.

Pollinator efficiency results

Notice the pollen loss!
 5,000-10,000 removed and only 25-40 grains deposited!

Check out our new paper!

PROCEEDINGS B

rspb.royalsocietypublishing.org

Research

Cite this article: Koski MH, Ison JL, Padilla A, Pham AQ, Galloway LF. 2018 Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant – pollinator mutualism. *Proc. R. Soc. B* **285**: 20180635. http://dx.doi.org/10.1098/rspb.2018.0635

Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant – pollinator mutualism

Matthew H. Koski¹, Jennifer L. Ison², Ashley Padilla², Angela Q. Pham¹ and Laura F. Galloway¹

¹Department of Biology, University of Virginia, Charlottesville, VA 22904, USA ²Department of Biology, The College of Wooster, Wooster, OH 44691, USA

(D) MHK, 0000-0002-0274-3145

Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies

Research questions

- Is this even variation that the pollinators could select for?
 i.e. Can they perceive it?
- Do the pollinators differ in their per visit pollination efficiency?
 Implications for potential strength of YES! selection
- In field conditions, do the pollinators have a pollen color preference?
 Is the preference frequency dependent?

In field conditions, do the pollinators have a pollen color preference?

• Is the preference frequency dependent?

Elizabeth Tuan '18

Pollinator pollen color preference

Pollinator floral sex phase preference

Research questions

- Is this even variation that the pollinators could select for?
 i.e. Can they perceive it?
- Do the pollinators differ in their per visit pollination efficiency?
 Implications for potential strength of YES! selection
- In field conditions, do the pollinators have a pollen color preference? YES!
 Is the preference frequency dependent? NO!

Overall conclusions

- Pollinators can use pollen as a visual cue
- Pollinators vary in their effectiveness

 Megachile may deplete pollen from Å populations.

•*Megachile* have a strong and consistent purple pollen color preference.

So what are the mechanisms that maintains the pollen color variation in Bellflower?

Abiotic

- Purple pollen is more heat stress tolerant.
- Pollinator-mediated
 - In predominately light colored populations, purple pollen is likely depleted by *Megachile*.

Neutral?

http://isonlab.voices .wooster.edu jison@wooster.edu @JenniferIsonL

> **Funding from:** NSF-ROA supplement The College of Wooster's Copeland and Wilson Awards Pollinator drawings by KJB

r 180

ADDINES!

mound

COLLICE OF

THEFTE